Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(4): e4261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363004

RESUMO

Synchronized episodic reproduction among long-lived plants shapes ecological interactions, ecosystem dynamics, and evolutionary processes worldwide. Two active scientific fields investigate the causes and consequences of such synchronized reproduction: the fields of masting and fire-stimulated flowering. While parallels between masting and fire-stimulated flowering have been previously noted, there has been little dialogue between these historically independent fields. We predict that the synthesis of these fields will facilitate new insight into the causes and consequences of synchronized reproduction. Here we briefly review parallels between masting and fire-stimulated flowering, using two case studies and a database of 1870 plant species to facilitate methodological, conceptual, geographical, taxonomic, and phylogenetic comparisons. We identify avenues for future research and describe three key opportunities associated with synthesis. First, the taxonomic and geographic complementarity of empirical studies from these historically independent fields highlights the potential to derive more general inferences about global patterns and consequences of synchronized reproduction in perennial plants. Second, masting's well developed conceptual framework for evaluating adaptive hypotheses can help guide empirical studies of fire-stimulated species and enable stronger inferences about the evolutionary ecology of fire-stimulated flowering. Third, experimental manipulation of reproductive variation in fire-stimulated species presents unique opportunities to empirically investigate foundational questions about ecological and evolutionary processes underlying synchronized reproduction. Synthesis of these fields and their complementary insights offers a unique opportunity to advance our understanding of the evolutionary ecology of synchronized reproduction in perennial plants.


Assuntos
Ecossistema , Incêndios , Filogenia , Sementes , Reprodução
2.
Proc Natl Acad Sci U S A ; 120(39): e2306967120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722060

RESUMO

Many plant species in historically fire-dependent ecosystems exhibit fire-stimulated flowering. While greater reproductive effort after fire is expected to result in increased reproductive outcomes, seed production often depends on pollination, the spatial distribution of prospective mates, and the timing of their reproductive activity. Fire-stimulated flowering may thus have limited fitness benefits in small, isolated populations where mating opportunities are restricted and pollination rates are low. We conducted a 6-y study of 6,357 Echinacea angustifolia (Asteraceae) individuals across 35 remnant prairies in Minnesota (USA) to experimentally evaluate how fire effects on multiple components of reproduction vary with population size in a common species. Fire increased annual reproductive effort across populations, doubling the proportion of plants in flower and increasing the number of flower heads 65% per plant. In contrast, fire's influence on reproductive outcomes differed between large and small populations, reflecting the density-dependent effects of fire on spatiotemporal mating potential and pollination. In populations with fewer than 20 individuals, fire did not consistently increase pollination or annual seed production. Above this threshold, fire increased mating potential, leading to a 24% increase in seed set and a 71% increase in annual seed production. Our findings suggest that density-dependent effects of fire on pollination largely determine plant reproductive outcomes and could influence population dynamics across fire-dependent systems. Failure to account for the density-dependent effects of fire on seed production may lead us to overestimate the beneficial effects of fire on plant demography and the capacity of fire to maintain plant diversity, especially in fragmented habitats.


Assuntos
Ecossistema , Aptidão Genética , Humanos , Reprodução , Polinização , Sementes
3.
Am J Bot ; 110(6): e16190, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37293762

RESUMO

PREMISE: Reproductive fitness in plants is often determined by the quantity and quality of pollen transferred by pollinators. However, many fitness studies measure only female fitness or rely on proxies for male fitness. Here we assessed how five bee taxon groups affect male fitness in a prairie plant by quantifying pollen removal, visitation, and siring success using paternity assignments and a unique pollinator visitation experiment. METHODS: In Echinacea angustifolia, we measured per-visit pollen removal for each pollinator taxon and estimated the number of pollen grains needed for successful ovule fertilization. Additionally, we directly measured pollinator influence on siring by allowing only one bee taxon to visit each pollen-donor plant, while open-pollinated plants acted as unrestricted pollen recipients. We genotyped the resulting offspring, assigned paternity, and used aster statistical models to quantify siring success. RESULTS: Siring success of pollen-donor plants differed among the five pollinator groups. Nongrooming male bees were associated with increased siring success. Bees from all taxa removed most of the flowering head's pollen in one visit. However, coneflower-specialist bee Andrena helianthiformis removed the most pollen per visit. Female fitness and proxy measures of male fitness, such as pollinator visitation and pollen removal, did not align with our direct quantifications of male fitness. CONCLUSIONS: Our results illustrate the need for more studies to directly quantify male fitness, and we caution against using male fitness proxy measures. In addition, conservation efforts that preserve a diverse pollinator community can benefit plants in fragmented landscapes.


Assuntos
Flores , Polinização , Abelhas , Animais , Reprodução , Pólen , Aptidão Genética
4.
Am J Bot ; 110(4): e16160, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943018

RESUMO

PREMISE: Fire induces flowering in many plant species worldwide, potentially improving reproductive fitness via greater availability of resources, as evident by flowering effort, and improved pollination outcomes, as evident by seed set. Postfire increases in flowering synchrony, and thus mating opportunities, may improve pollination. However, few studies evaluate fire effects on multiple components of fitness. Consequently, the magnitude and mechanism of fire effects on reproductive fitness remain unclear. METHODS: Over multiple years and prescribed burns in a prairie preserve, we counted flowering stems, flowers, fruits, and seeds of three prairie perennials, Echinacea angustifolia, Liatris aspera, and Solidago speciosa. We used aster life-history models to assess how fire and mating opportunities influenced annual maternal fitness and its components in individual plants. RESULTS: In Echinacea and Liatris, but not in Solidago, fire increased head counts, and both fire and mating opportunities increased maternal fitness. Burned Echinacea and Liatris plants with many flower heads produced many seeds despite low seed set (fertilization rates). In contrast, plants with an average number of flower heads had high seed set and produced many seeds only when mating opportunities were abundant. CONCLUSIONS: Fire increased annual reproductive fitness via resource- and pollination-dependent mechanisms in Echinacea and Liatris but did not affect Solidago fitness. The consistent relationship between synchrony and seed set implies that temporal mating opportunities play an important role in pollination. While fire promotes flowering in many plant species, our results reveal that even closely related species exhibit differential responses to fire, which could impact the broader plant community.


Assuntos
Aptidão Genética , Polinização , Polinização/fisiologia , Plantas , Reprodução , Sementes/fisiologia , Flores/fisiologia
5.
Am J Bot ; 109(11): 1861-1874, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112607

RESUMO

PREMISE: Reproductive fitness of individual plants depends on the timing of flowering, especially in mate-limited populations, such as those in fragmented habitats. When flowering time traits are associated with differential reproductive success, the narrow-sense heritability (h2 ) of traits will determine how rapidly trait means evolve in response to selection. Heritability of flowering time is documented in many annual plants. However, estimating h2 of flowering time in perennials presents additional methodological challenges, often including paternity assignment and trait expression over multiple years. METHODS: We evaluated the h2 of onset and duration of flowering using offspring-midparent regressions and restricted maximum likelihood methods in an experimental population of an iterocarpic, perennial, herbaceous plant, Echinacea angustifolia, growing in natural conditions. We assessed the flowering time of the parental cohort in 2005 and 2006; the offspring in 2014 through 2017. We also examined the effects of the paternity assignment from Cervus and MasterBayes on estimates of h2 . RESULTS: We found substantial h2 for onset and duration of flowering. We also observed variation in estimates among years. The most reliable estimates for both traits fell in the range of 0.1-0.17. We found evidence of a genotype by year interaction for onset of flowering and strong evidence that genotypes are consistent in their duration of flowering across years. CONCLUSIONS: Substantial heritabilities in this population imply the capacity for a response to natural selection, while also suggesting the potential for differential contributions to adaptive evolution among seasons.


Assuntos
Flores , Reprodução , Flores/genética , Reprodução/genética , Fenótipo , Variação Genética , Plantas
6.
New Phytol ; 233(5): 2083-2093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921422

RESUMO

A recent study posited that fire in grasslands promotes persistence of plant species by improving mating opportunities and reproductive outcomes. We devised an investigation to test these predicted mechanisms in two widespread, long-lived perennials. We expect fire to synchronize flowering, increase mating and boost seed set. We quantified individual flowering phenology and seed set of Liatris aspera and Solidago speciosa for 3 yr on a preserve in Minnesota, USA. The preserve comprises two management units burned on alternating years, allowing for comparisons between plants in burned and unburned areas within the same year, and plants in the same area across years with and without burns. Fire increased flowering synchrony and increased time between start date and peak flowering. Individuals of both species that initiated flowering later in the season had higher seed set. Fire was associated with substantially higher flowering rates and seed set in L. aspera but not S. speciosa. In L. aspera, greater synchrony was associated with increased mean seed set. Although fire affected flowering phenology in both species, reproductive success improved only in the species in which fire also synchronized among-year flowering. Our results support the hypothesis that reproduction in some grassland species benefits from fire.


Assuntos
Incêndios , Flores , Plantas , Reprodução , Estações do Ano
7.
Oecologia ; 196(3): 679-691, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34076744

RESUMO

In grasslands worldwide, modified fire cycles are accelerating herbaceous species extinctions. Fire may avert population declines by increasing survival, reproduction, or both. Survival and growth after fires may be promoted by removal of competitors or biomass and increasing resource availability. Fire-stimulated reproduction may also contribute to population growth through bolstered recruitment. We quantified these influences of fire on population dynamics in Echinacea angustifolia, a perennial forb in North American tallgrass prairie. We first used four datasets, 7-21 years long, to estimate fire's influences on survival, flowering, and recruitment. We then used matrix projection models to estimate growth rates across several burn frequencies in five populations, each with one to four burns over 15 years. Finally, we estimated the contribution of fire-induced changes in each vital rate to changes in population growth. Population growth rates generally increased with burning. The demographic process underpinning these increases depended on juvenile survival. In populations with high juvenile survival, fire-induced increases in seedling recruitment and juvenile survival enhanced population growth. However, in populations with low juvenile survival, small changes in adult survival drove growth rate changes. Regardless of burn frequencies, our models suggest populations are declining and that recruitment and juvenile survival critically influence population response to fire. However, crucially, increased seedling recruitment only increases population growth rates when enough new recruits reach reproductive maturity. The importance of recruitment and juvenile survival is especially relevant for small populations in fragmented habitats subject to mate-limiting Allee effects and inbreeding depression, which reduce recruitment and survival, respectively.


Assuntos
Incêndios , Pradaria , Animais , Ecossistema , Plantas , Dinâmica Populacional
8.
Proc Natl Acad Sci U S A ; 117(6): 3000-3005, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988124

RESUMO

Fire is an important determinant of habitat structure and biodiversity across ecosystems worldwide. In fire-dependent communities, similar to the North American prairie, fire suppression contributes to local plant extinctions. Yet the demographic mechanisms responsible for species loss have not been directly investigated. We conducted a 21-y longitudinal study of 778 individual plants of Echinacea angustifolia, a widespread perennial species with chronically limited mating opportunities, to explore how fire affects reproduction. In a large preserve, with management units on different burn schedules, we investigated Echinacea mating scenes, which quantify isolation from potential mates and overlap in the timing of flowering, to determine the extent to which fire influences the potential for sexual reproduction. We demonstrate that fire consistently increased mating opportunities by synchronizing reproductive effort. Each fire occurred during fall or spring and stimulated flowering in the subsequent summer, thus synchronizing reproduction among years and increasing the proximity of potential mates after a fire. Greater within-season flowering synchrony in postfire mating scenes further increased mating potential. The improved postfire mating scene enhanced reproduction by increasing pollination efficiency. Seed set in scenes postfire exceeded other scenes by 55%, and annual fecundity nearly doubled (88% increase). We predict the reproductive benefits of synchronized flowering after fire can alleviate mate-finding Allee effects, promote population growth, and forestall local extirpation in small populations of Echinacea and many other prairie species. Furthermore, the synchronization of flowering by burning may improve mating opportunities, reproduction, and the likelihood of persistence for many other plant species in fire-dependent habitats.


Assuntos
Flores , Pradaria , Polinização/fisiologia , Incêndios Florestais , Echinacea/crescimento & desenvolvimento , Echinacea/fisiologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Aptidão Genética , Estudos Longitudinais , Dinâmica Populacional , Sementes/fisiologia
9.
Am J Bot ; 106(11): 1487-1498, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31713237

RESUMO

PREMISE: Variation in pollinator effectiveness may contribute to pollen limitation in fragmented plant populations. In plants with multiovulate ovaries, the number of conspecific pollen grains per stigma often predicts seed set and is used to quantify pollinator effectiveness. In the Asteraceae, however, florets are uniovulate, which suggests that the total amount of pollen deposited per floret may not measure pollinator effectiveness. We examined two aspects of pollinator effectiveness-effective pollen deposition and effective pollen movement-for insects visiting Echinacea angustifolia, a composite that is pollen limited in small, isolated populations. METHODS: We filmed insect visits to Echinacea in two prairie restorations and used these videos to quantify behavior that might predict effectiveness. To quantify effective pollen deposition, we used the number of styles shriveled per visit. To quantify effective pollen movement, we conducted paternity analysis on a subset of offspring and measured the pollen movement distance between mates. RESULTS: Effective pollen deposition varied among taxa. Andrena helianthiformis, a Heliantheae oligolege, was the most effective taxon, shriveling more than twice the proportion of styles as all other visitors. Differences in visitor behavior on a flowering head did not explain variation in effective pollen deposition, nor did flowering phenology. On average, visitors moved pollen 16 m between plants, and this distance did not vary among taxa. CONCLUSIONS: Andrena helianthiformis is an important pollinator of Echinacea. Variation in reproductive fitness of Echinacea in fragmented habitat may result, in part, from the abundance of this species.


Assuntos
Insetos , Pólen , Animais , Abelhas , Ecossistema , Flores , Aptidão Genética , Polinização , Reprodução
10.
Am Nat ; 192(3): 379-388, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125234

RESUMO

The timing and synchrony of mating activity in a population may vary both within and among years. With the exception of masting species, in which reproductive activity fluctuates dramatically among years, mating synchrony is typically studied within years. However, opportunities to mate also vary among years in nonmasting iteroparous species. We demonstrate that studying only within-year flowering synchrony fails to accurately quantify variation in mating opportunity in an experimental population ([Formula: see text]) of a nonmasting species, Echinacea angustifolia. We quantified individuals' synchrony of flowering within and among years and partitioned the contribution of each measure to mean daily mating potential, the number of potential mates per individual per day, averaged over every day that it flowered during the 11-year study period. Individual within- and among-year synchrony displayed wide variation and were weakly correlated. In particular, among-year synchrony explained 39% more variation in mean daily mating potential than did within-year synchrony. Among-year synchrony could have underappreciated significance for mating dynamics in nonmasting species.


Assuntos
Echinacea/fisiologia , Flores/fisiologia , Reprodução
11.
Ecology ; 96(7): 1877-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26378310

RESUMO

Habitat fragmentation produces small, spatially isolated populations that promote inbreeding. Remnant populations often contain inbred and outbred individuals, but it is unclear how inbreeding relative to outbreeding affects the expression of functional traits and biotic interactions such as herbivory. We measured a suite of 12 functional traits and herbivore damage on three genotypic cross types in the prairie forb, Echinacea angustifolia: inbred, and outbred crosses resulting from matings within and between remnant populations. Inbreeding significantly affected the expression of all 12 functional traits that influence resource capture. Inbred individuals had consistently lower photosynthetic rates, water use efficiencies, specific leaf areas, and had higher trichome numbers, percent C, and percent N than outbred individuals. However, herbivore damage did not differ significantly among the cross types and was not correlated with other leaf functional traits. Leaf architecture and low physiological rates of the inbred compared to outbred individuals imply poorer capture or use of resources. Inbred plants also had lower survival and fitness relative to outbred plants. Our results show that inbreeding, a phenomenon predicted and observed to occur in fragmented populations, influences key functional traits such as plant structure, physiology and elemental composition. Because of their likely role in fitness of individuals and ecological dynamics plant functional traits can serve as a bridge between evolution and community or ecosystem ecology.


Assuntos
Echinacea/genética , Echinacea/fisiologia , Variação Genética , Herbivoria , Animais , Demografia , Monitoramento Ambiental
12.
Am J Bot ; 101(1): 180-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24388964

RESUMO

PREMISE OF THE STUDY: Although spatial distance is considered the primary factor in determining plant mating patterns, flowering time and synchrony are also likely to be important. METHODS: We quantified the relationships of both distance and flowering phenology to the probability of mating between individual plants. In an experimental plot, we followed daily flowering phenology in Echinacea angustifolia, a self-incompatible perennial pollinated by solitary bees. We assigned paternity to 832 of 927 seedlings from 37 maternal plants using 11 microsatellite loci. Potential pollen donors included the experiment plot's 202 flowering plants and a nearby plot's 19 flowering plants. For each maternal plant sampled, we examined the pollen pool by quantifying correlated paternity and the effective number of pollen donors. KEY RESULTS: Significantly more pollinations occurred between neighboring and synchronous plants than expected under random mating, with distance being more important than flowering synchrony. The distance pollen moved varied over the course of the season, with late flowering plants mating with more distant plants compared to early or peak flowering plants. All maternal plants had a diverse set of mates (mean number of effective pollen donors = 23.7), and the composition of the pollen pools overlapped little between maternal plants. CONCLUSION: Both distance and flowering synchrony influenced pollination patterns in E. angustifolia. Our results suggest that pollen movement between incompatible mates and flowering asynchrony could be contributing to the reduced seed set observed in small E. angustifolia remnants. However, we also found that individual plants receive pollen from a diverse group of pollen donors.


Assuntos
Echinacea/fisiologia , Flores/fisiologia , Modelos Lineares , Minnesota , Reprodução/fisiologia , Fatores de Tempo
13.
Appl Plant Sci ; 1(11)2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25202499

RESUMO

PREMISE OF THE STUDY: Microsatellite loci for the native prairie perennial Echinacea angustifolia were developed and evaluated for future use in population structure and paternity studies. • METHODS AND RESULTS: A total of 50 trinucleotide microsatellite regions were identified though an enrichment protocol that prescreens for microsatellite repeats before ligating into a vector. Of these, 11 loci were polymorphic and in Hardy-Weinberg equilibrium in three populations with varying numbers of plants. The loci had between three and 14 alleles and collectively provided high paternity exclusion probabilities. • CONCLUSIONS: These sets of microsatellite primers will provide researchers and land managers with valuable information on the population genetic structure and gene flow between fragmented prairie populations.

14.
PLoS One ; 6(9): e24762, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935460

RESUMO

Fragmentation of once widespread communities may alter interspecific interactions by changing genetic composition of interacting populations as well as their abundances and spatial distributions. In a long-term study of a fragmented population of Echinacea angustifolia, a perennial plant native to the North American prairie, we investigated influences on its interaction with a specialist aphid and tending ants. We grew plant progeny of sib-matings (I), and of random pairings within (W) and between (B) seven remnants in a common field within 8 km of the source remnants. During the fifth growing season, we determined each plant's burden of aphids and ants, as well as its size and foliar elemental composition (C, N, P). We also assayed composition (C, N) of aphids and ants. Early in the season, progeny from genotypic classes B and I were twice as likely to harbor aphids, and in greater abundance, than genotypic class W; aphid loads were inversely related to foliar concentration of P and positively related to leaf N and plant size. At the end of the season, aphid loads were indistinguishable among genotypic classes. Ant abundance tracked aphid abundance throughout the season but showed no direct relationship with plant traits. Through its potential to alter the genotypic composition of remnant populations of Echinacea, fragmentation can increase Echinacea's susceptibility to herbivory by its specialist aphid and, in turn, perturb the abundance and distribution of aphids.


Assuntos
Afídeos/crescimento & desenvolvimento , Echinacea/crescimento & desenvolvimento , Animais , Ecossistema , Herbivoria
15.
Ecology ; 91(3): 733-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20426332

RESUMO

Pollen limitation of plant reproduction occurs in many plant species, particularly those in fragmented habitat; however, causes of pollen limitation are often unknown. We investigated the relationship between pollen limitation and pollinator visitation in the purple coneflower, Echinacea angustifolia (Asteraceae), which grows in the extremely fragmented tall grass prairie of North America. Previous investigations showed that pollen limitation of E. angustifolia increases with plant isolation and decreases with population size. We observed insect visitation to E. angustifolia over two flowering seasons and estimated pollen limitation of observed plants, using seed set as a proxy measure in 2004 and persistence of receptive style rows in 2005. We analyzed spatial patterns of bee visitation and pollination at two spatial scales: individual isolation, as measured by the distance to their kth nearest flowering neighbors (k = 1 - 15), and population size. Our results indicate that E. angustifolia is pollinated by over 26 species of native bees, with 70-75% of visits by halictid bees. Surprisingly, in both years, bee visitation increased with isolation of individual plants and did not vary significantly with population size. As expected, plant isolation increased pollen limitation and lowered seed set. There was no effect of population size on seed set in 2004, and pollen limitation decreased nonsignificantly with population size in 2005. We conclude that pollen receipt limits reproduction in E. angustifolia, but pollinator visitation does not. Remarkably, isolated plants simultaneously have increased rates of pollinator visitation by pollinators and decreased reproduction. We discuss alternative explanations of pollen limitation that are consistent with this apparent discrepancy, including a decline in the availability of compatible conspecific pollen with increased plant isolation.


Assuntos
Echinacea/fisiologia , Insetos/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Animais , Ecossistema
16.
Evolution ; 64(3): 761-71, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19817853

RESUMO

Despite fundamental importance to population dynamics, mating system evolution, and conservation management, the fitness consequences of breeding patterns in natural settings are rarely directly and rigorously evaluated. We experimentally crossed Echinacea angustifolia, a widespread, perennial prairie plant undergoing radical changes in distribution and abundance due to habitat fragmentation. We quantified the effects of both biparental inbreeding and crossing between remnant populations on progeny survival and reproduction in the field over the first eight years. Lifetime fitness is notoriously difficult to assess particularly for iteroparous species because of the long sequence and episodic nature of selection events. Even with fitness data in hand, analysis is typically plagued by nonnormal distributions of overall fitness that violate the assumptions of the usual parametric statistical approaches. We applied aster modeling, which integrates the measurements of separate, sequential, nonnormally distributed annual fitness components, and estimated current biparental inbreeding depression at 68% in progeny of sibling-mating. The effect of between-remnant crossing on fitness was negligible. Given that relatedness among individuals in remnant populations is already high and dispersal very limited, inbreeding depression may profoundly affect future dynamics and persistence of these populations, as well as their genetic composition.


Assuntos
Echinacea/genética , Evolução Biológica , Echinacea/fisiologia , Ecossistema , Aptidão Genética , Hibridização Genética , Endogamia , Fatores de Tempo
17.
Am Nat ; 172(1): E35-47, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18500940

RESUMO

The lifetime fitnesses of individuals comprising a population determine its numerical dynamics, and genetic variation in fitness results in evolutionary change. This dual importance of individual fitness is well understood, but empirical fitness records generally violate the assumptions of standard statistical approaches. This problem has undermined comprehensive study of fitness and impeded empirical synthesis of the numerical and genetic dynamics of populations. Recently developed aster models remedy this problem by explicitly modeling the dependence of later-expressed components of fitness (e.g., fecundity) on those expressed earlier (e.g., survival to reproduce). Moreover, aster models employ different sampling distributions for different components of fitness (e.g., binomial for survival over a given interval and Poisson for fecundity). Analysis is done by maximum likelihood, and the resulting distributions for lifetime fitness closely approximate observed data. We illustrate the breadth of aster models' utility with three examples demonstrating estimation of the finite rate of increase, comparison of mean fitness among genotypic groups, and analysis of phenotypic selection. Aster models offer a unified approach to addressing the breadth of questions in evolution and ecology for which life-history data are gathered.


Assuntos
Afídeos/fisiologia , Chamaecrista/parasitologia , Echinacea/parasitologia , Animais , Ecossistema , Interações Hospedeiro-Parasita , Longevidade , Modelos Biológicos , Crescimento Demográfico , Reprodução/fisiologia , Sementes/fisiologia , Fatores de Tempo
18.
Am Nat ; 169(3): 383-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17230399

RESUMO

We used empirical and modeling approaches to examine effects of plant breeding systems on demographic responses to habitat fragmentation. Empirically, we investigated effects of local flowering plant density on pollination and of population size on mate availability in a common, self-incompatible purple coneflower, Echinacea angustifolia, growing in fragmented prairie habitat. Pollination and recruitment increased with weighted local density around individual flowering plants. This positive density dependence is an Allee effect. In addition, mean mate compatibility between pairs of plants increased with population size. Based on this empirical study, we developed an individual-based, spatially explicit demographic model that incorporates autosomal loci and an S locus. We simulated habitat fragmentation in populations identical except for their breeding system, self-incompatible (SI) or self-compatible (SC). Both populations suffered reduced reproduction in small patches because of scarcity of plants within pollination distance (potential mates) and inbreeding depression. But SI species experienced an additional, genetic contribution to the Allee effect (S-Allee effect) caused by allele loss at the S locus, which reduces mate availability, thereby decreasing reproduction. The strength of the S-Allee effect increases through time (i.e., patches age) because random genetic drift reduces S-allele richness. We investigate how patch aging influences extinction and discuss how the S-Allee effect influences communities in fragmented habitat.


Assuntos
Cruzamento , Echinacea/genética , Ecossistema , Aptidão Genética , Variação Genética , Polinização , Autoincompatibilidade em Angiospermas/genética , Simulação por Computador , Echinacea/fisiologia , Extinção Biológica , Deriva Genética , Minnesota , Modelos Biológicos , Densidade Demográfica , Autofertilização , Autoincompatibilidade em Angiospermas/fisiologia
19.
Ecology ; 87(4): 931-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16676537

RESUMO

I investigated reproduction in a three-year study of Echinacea angustifolia, purple coneflower, growing in a fragmented prairie landscape. I quantified the local abundance of flowering conspecifics at individual-based spatial scales and at a population-based spatial scale. Regression analyses revealed that pollen limitation increased while seed set and fecundity decreased with isolation of individual plants. Isolation, defined as the distance to the k(th) nearest flowering conspecific, was a good predictor of pollen limitation, for all nearest neighbors considered (k = 1-33), but the strength of the relationship, as quantified by R2, peaked at intermediate scales (k = 2-18). The relationship of isolation to seed set and fecundity was similarly strongest at intermediate scales (k = 3-4). The scale dependence of individual density effects on reproduction (density of flowering plants within x meters) resembled that of isolation. Analyses at a population-based scale showed that pollen limitation declined significantly with population size. Seed set and fecundity also declined with population size, but significantly so only in 1998. Whether quantifying local abundance with population- or individual-based measures, reproductive failure due to pollen limitation is a consistent consequence of Echinacea scarcity. However, individual-based measures of local abundance predicted pollen limitation from a wider sample of plants with a simpler model than did population size. Specifically, the largest site, a nature preserve, is composed of plants with intermediate individual isolation and, as predicted, intermediate pollen limitation, but its large population size poorly predicted population mean pollen limitation.


Assuntos
Echinacea/fisiologia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...